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a b s t r a c t

Unmanned vending machines (UVMs) based on computer vision have shown huge commercial
potential in unmanned retail. Anomaly detection is the problem of recognizing the falling-over
and occlusion anomalies in UVMs. However, considering various anomaly features with different
feature complexities, the existing methods are not sufficiently effective. In this paper, we propose
an unmanned retail anomaly detection method based on deep convolutional neural networks (CNNs)
called the complexity-classification anomaly detection (ClassAD) framework. The ClassAD method
consists of two modules: a complexity rating module and a classification module. These two modules
jointly input images of different feature complexity into different-capacity networks, which makes full
use of the feature extraction ability of CNNs. ClassAD includes a decomposition feature enhancement
approach to enhance inference speed. Furthermore, we introduce complexity-class loss and multi-
instance loss in ClassAD for accuracy and learning stability. Experiments show that ClassAD yields
promising results compared with state-of-the-art methods in both effectiveness and efficiency. In
addition, we propose a UVM-Anomaly dataset for anomaly detection in UVMs.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Vision-based unmanned vending machines (UVMs) [1–3] have
merged and drawn attention in recent years due to their con-
picuous commercial value. UVMs enable direct interactions be-
ween customers and products. In addition, UVMs help sellers
o maintain inventory in a flexible manner. Moreover, a simple
amera is enough for the machine, which can achieve large-
cale cost savings. Considering the advantages of UVMs, many
nterprises such as Amazon, Walmart, Alibaba, etc., have pushed
ut their own products and tried to occupy the market. However,
here still exist some issues that need to be improved. Currently,
ost researchers focus on the recognition of stock keeping units

SKUs) [4–7] in UVMs.
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Anomaly detection [8,9] is also an essential part of UVMs.
Anomalies always occur in UVMs because of flexible interactions
between containers and customers. As shown in Fig. 1, falling-
over anomalies make SKUs hard to recognize, while occlusion
anomalies obstruct the view of SKUs. SKU recognition algorithms
cannot tackle unpredictable anomalies. Currently, anomaly detec-
tion for UVMs lacks sufficient study. The economic loss caused
by the internal anomaly occupies a large proportion of the to-
tal loss [10]. Thus, there is a strong and practical necessity for
anomaly detection in UVMs.

Currently, anomaly detection in UVMs has two main chal-
lenges: (1) feature unpredictability, which leads to large intra-
class variance, and (2) the imbalance problem, including feature
complexity imbalance and anomaly class imbalance.

1. Feature unpredictability: Feature unpredictability mainly
consists of three aspects: (1) a wide variety of SKUs; (2)
different angles and positions; and (3) unknown foreign
matter. Good performance relies on high similarity within
classes and large differences between classes. However,
we need to overcome large intraclass variance due to the
feature unpredictability of anomaly features.
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Fig. 1. Illustration of UVM scenes. (a) is the normal situation. (b) is the
falling-over anomaly situation. (c) is the occlusion anomaly situation.

2. Imbalance problem: The imbalance problem can be di-
vided into two aspects: feature complexity imbalance and
class imbalance. (1) Feature complexity imbalance reflects
that some SKUs have complex textured surfaces, while the
background has simple features. A rough network that uni-
formly processes images of different feature complexities
can hardly determine suitable model capacity. This results
in overfitting for low-complexity images and insufficient
learning for high-complexity images; (2) Class imbalance
refers to detectors evaluating a large number of images, but
only a few images contain anomalies. Anomalies occupy
only a small area on the images compared with normal
samples. Class imbalance causes inefficient training, and
normal samples overwhelm and degenerate the network.

To intuitively show the feature complexity imbalance prob-
lem, we calculate the peak signal-to-noise ratio (PSNR) values of
all the images in our proposed dataset UVM-Anomaly, which is
shown in Fig. 2. All the PSNR values are calculated through a well-
trained superresolution model RCAN [11]. The PSNR is a widely
used metric for quantitatively evaluating image restoration qual-
ity, which is related to feature complexity [12]. We divide all the
images into three ranges: low-complexity, medium-complexity
and high-complexity, based on the PSNR values from high to
low. As shown in Fig. 2, images with high PSNR values gener-
ally show smooth features, while images with low PSNR values
show complex features. We will discuss the feature complexity
in Section 6.1.

Fortunately, computer vision offers deep convolutional neural
networks (DCNNs) for anomaly detection [13,14]. Li et al. [15]
proposed a cuboid-patch-based method for anomaly detection
and localization in video surveillance. Massoli et al. [16] pro-
posed a novel framework, named multilayer one-class classifica-
tion (MOCCA), using autoencoders to train and test DL models
on the AD task. Roth et al. [17] proposed PatchCore, which uses
a maximally representative memory bank of nominal patch fea-
tures. In the existing works, the following issues are worthy of
attention: (1) The feature distribution directly determines the
feasibility of the work in practice. When anomaly features are
2

Fig. 2. The sorted image-PSNR curve of the UVM-Anomaly dataset. The image
patches around the curve are cropped from original images in the dataset.

unpredictable or similar to normal features, the performance will
suffer greatly, especially in the case of the one-class classification
method. (2) Due to the feature complexity imbalance problem,
a single DCNN can hardly strike a balance between effectiveness
and efficiency when working on different complexity features. (3)
In actual use, the normal situation is far more common than the
anomaly situation, and the anomalies will be hidden. Therefore,
the class imbalance problem affects the sufficient learning of the
detector, especially for the UVM scenarios.

To address the challenges above, we propose a new novel
framework for anomaly detection in UVMs, namely, complexity-
classification anomaly detection (ClassAD). To the best of our
knowledge, ClassAD is the first anomaly detection framework in
UVMs. (1) ClassAD consists of two modules: complexity rating
module and classification module. The complexity rating mod-
ule is a simple classification network that classifies the input
images into different feature complexity classes. The classifi-
cation module contains several CNN branches, each of which
can classify images into anomaly and normal classes. We de-
sign this new complexity rating mechanism which uses two
modules jointly, different branches deal with corresponding im-
ages with different feature complexity. ClassAD can address the
feature complexity imbalance and achieve a balance between ef-
fectiveness and efficiency. (2) We propose an image enhancement
approach named decomposition feature enhancement in front
f ClassAD, which utilizes a self-adaptive method to determine
he separation standard to separate images into small subimages.
his approach can reduce the adverse effect brought by high
ntraclass variance as well as accelerate inference speed and
educe the training difficulty. (3) We propose complexity-class
oss and multi-instance loss. Complexity-class loss can acceler-
te the convergence of feature complexity classification; multi-
nstance loss can reduce class imbalance between the normal
nd anomaly. These two losses cooperatively make the feature
omplexity class well-distributed and the classification effective.
he whole pipeline is complete and novel, which is effective on
nomaly detection on UVMs. (4) Finally, we propose a dataset
amed UVM-Anomaly for anomaly detection in the UVMs. UVM-
nomaly includes 85 types of different SKUs and different kinds
f falling-over and occlusion anomalies.
The main contributions of this paper can be summarized as

ollows:

1. We propose the complexity classing anomaly detection
(ClassAD) framework for anomaly detection, especially for
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UVM scenes. It achieves a suitable trade-off between fi-
delity and efficiency for anomaly classification.

2. We propose the decomposition-feature-enhancement ap-
proach. It self-adaptively generates subimages to accelerate
the training process.

3. We propose two novel loss functions for classification net-
works. Complexity-class loss speeds up the convergence,
and multi-instance loss balances the anomaly and normal
instances.

4. We propose a large-scale UVM-Anomaly dataset for SKU
anomaly detection.

The remainder of this paper is organized as follows. Related
ork is reviewed in Section 2. The proposed method is elabo-
ated in Section 3. The decomposition feature enhancement and
wo loss functions are also explained in this section. The UVM-
nomaly dataset is described in Section 4. Experimental results
re shown in Section 5. Discussions are presented in Section 6.
e conclude our work in Section 7.

. Related works

In this section, we briefly review and describe some related
ork on UVMs. Moreover, we introduce some well-performing
eep learning methods for anomaly detection in the second part.

.1. Unmanned techniques

At present, the unmanned retail field has three kinds of main-
tream features: quick response (QR) code recognition [18], radio
requency identification (RFID) [19], and vision-based techniques.
he QR code technique uses QR code labels attached to items;
FID recognizes items with electronic tags and radio frequency
ransmitting and reception circuits; vision-based techniques uti-
ize cameras and computer vision technology for recognition and
etection. We will mainly focus on vision-based unmanned retail
orks.
Zhang et al. [6] proposed several recently developed deep

earning models with their self-compiled large-scale dataset, the
mages of which were captured in a refrigerator equipped with
ameras. Liu et al. [7] proposed a smart unstaffed retail shop
cheme based on artificial intelligence and the internet of things.
n addition, an end-to-end classification model trained by the
ask-RCNN method was developed for SKU counting and recog-
ition. Zhao et al. [20] proposed a unified object detection frame-
ork used for dense scenarios in retail images, which consisted of
hierarchical labelling pattern, a similarity recognition network
nd an optimized NMS algorithm. Nogueira et al. [21] proposed
low-cost deep learning approach to estimate the number of
eople in retail stores in real time. Wang et al. [22] proposed
n integrated model to coordinate the benefits of all decision
ubjects and designed a multiobjective optimization method. The
xisting methods are mainly focused on object detection on SKUs,
nd most papers emphasize the design of networks. However,
ew researchers have concentrated on anomaly detection. Our
nmanned retail anomaly detection method uses few hardware
onditions, only a fish-eye camera, while achieving high accuracy
n anomaly classification.
Some researchers have also proposed a variety of datasets.

hang et al. [2] collected more than 30,000 images of unmanned
etail containers using a refrigerator affixed with different cam-
ras under both static and dynamic recognition environments.
hese images were categorized into ten kinds of beverages. Thro-
gh manual labelling, the dataset above contained 155,153 in-
tances. Hao et al. [1] proposed a hierarchical large-scale object

etection dataset containing 38,000 images of 24 fine-grained i

3

and three coarse classes. Cai et al. [23] collected a large-scale
object localization and counting dataset including 50,394 images
with more than 1.9 million object instances in 140 categories. Wei
et al. [24] proposed a dataset containing 200 SKUs and 83,739
images, which included single-product and multiproduct images
collected in different scenes. These datasets have a tremendous
number of SKUs but no anomaly samples. In contrast, our UVM-
Anomaly dataset consists of normal and anomalous samples, and
as far as we know, the UVM-Anomaly dataset is the first dataset
for anomaly detection in UVMs.

2.2. Anomaly detection

Anomaly detection is a technique for classifying whether pat-
terns exist in data that do not conform to normal behaviour. It
has been used in a wide range of applications, such as cancer
cell detection [8,25], fraud detection [26] and industrial detec-
tion systems [27]. The principle of anomaly detection with deep
learning is to extract useful feature information from sample
images to judge whether or where abnormal conditions exist.
Based on the difference in the availability of labels [28], we can
divide the present approaches into three main classes: super-
vised deep anomaly detection [29], semisupervised deep anomaly
detection [26] and unsupervised deep anomaly detection [30].

Supervised deep anomaly detection is a commonly used ap-
proach in the anomaly detection domain which attaches each
instance in the dataset with a normal or anomalous label. Napole-
tano et al. [31] proposed a region-based method for the detection
of anomalies in scanning electron microscope images. Li et al. [15]
proposed a cuboid-patch-based method characterized by a cas-
cade of classifiers. Some methods also use one-class classification
for anomaly detection. Massoli et al. [16] proposed a novel frame-
work, named multilayer one-class classification (MOCCA), using
autoencoders to train and test DL models on the AD task. Roth
et al. [17] proposed PatchCore, which uses a maximally represen-
tative memory bank of nominal patch features. The performance
of the deep supervised classifier is suboptimal due to class im-
balance, where normal class instances are far more frequent than
anomalous class instances.

Semisupervised deep learning is more widely used than super-
vised learning in the domain of anomaly detection. An et al. [32]
proposed an autoencoder to extract feature information from
all normal instances. Akcay et al. [33] introduced an anomaly
detection model using a conditional generative adversarial net-
work that jointly learns the generation of high-dimensional image
space and the inference of latent space.

Unsupervised deep learning for anomaly detection detects
outliers based on intrinsic properties of the data instances. Yao
et al. [34] proposed an unsupervised algorithm called KfreqGAN,
which is based on an adversarially trained sequence predictor.

These methods can work well in certain scenes. However, in
the product scenery, large intraclass variance on feature and com-
plexity imbalance problem hinter the performance. Our proposed
classAD is effective and stable in UVM scenery, which can address
these problems well.

3. Method

In this section, we introduce ClassAD, a novel framework for
UVMs. As illustrated in Fig. 3, the network of ClassAD consists
of two modules, namely, a complexity rating module and a clas-
sification module. To start with, the image x is divided into
subimages xi (i = 1, . . . ,N) through the decomposition feature
nhancement approach, where N represents the number of sepa-
ated regions. Then, the calculation procedure for each subimage

s independently conducted. We select the subimage xi as an
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Fig. 3. The overview of our proposed ClassAD method. The number of subimages N = 4. The number of feature complexity classes C = 3. We only demonstrate the
rocedure for a single subimage xi .
ˆ

xample. (1) The complexity rating module has several convolu-
ional layers to generate the complexity score vector Sj(xi) (j =

, . . . , C) for xi. xi is classified by the index of the maximum
omplexity score: fi = argmaxj Sj (xi). fi represents the complexity
class of xi. (2) The classification module contains C branches
j
class (j = 1, . . . , C). Different branches Fclass have similar CNN
rameworks but different capacities to deal with subimages with
ifferent feature complexities. According to fi, xi is sent into the
orresponding branch, and the anomaly probability value ŷi is
obtained. The same process is repeated on all the subimages.

Finally, the framework obtains the anomaly probability vector
[ŷ1, ŷ2, . . . , ŷN ] for all the subimages and then calculates the
anomaly class of the image x. In the training process, we utilize
complexity-class loss and multi-instance loss to train ClassAD.

3.1. Complexity rating module

In this subsection, we elaborate on the complexity rating
module. The aim of this module is to discriminate whether the
input subimage is easy for CNNs to classify. As shown in Fig. 3,
the complexity rating module contains four convolution layers, an
average pooling layer and a fully connected layer. The convolution
layers are designed to extract shallow feature information, while
the average pooling layers fuse spatial per-pixel information. The
fully connected layer has several output units, which represent
the probabilities of different complexity classes. In our experi-
ment, we set the number of complexity classes to be C = 3, and
the output complexity score vector for the subimage xi is repre-
sented as Sj(xi) (j = 1, . . . , C). During the training process, we
use the complexity rating module as a classification model and
update the parameters. This network has a lightweight structure,
and it ensures fast inference speed and low computational cost.

3.2. Classification module

In this subsection, we elaborate the classification module with
several classification network branches F j

class (j = 1, . . . , C) for
anomaly detection. In our experiments, we set C = 3, and the
classification module has three branches: low-complexity class
branch, medium-complexity class branch, and high-complexity
class branch. Each branch is an anomaly detection classification
network, and different branches deal with images in different
4

feature complexity ranges. We use ResNet50 [35] as the high-
complexity class branch. We control the capacity of the networks
and use ResNet18 and ResNet34 as the other two branches.

In the training process, an input image x is divided into subim-
ages xi (i = 1, . . . ,N) by the decomposition feature enhance-
ment approach. After that, the complexity rating module pro-
cesses each subimage and generates a complexity score vector
Sj (xi) (j = 1, 2, . . . , C) for the subimage xi. During the classifi-
cation module, different from the testing process, each subimage
xi will be sent into all C classification branches. We define the
output of the jth branch as F j

class (xi). The network multiplies the
complexity score vector with all the outputs to generate the final
probability vector ŷi as

yi =

C∑
j

Sj (xi) · F j
class (xi) , (1)

The final probability vector ŷi will be involved in the calcu-
lation of loss functions and parameter updating. In the testing
process, the complexity rating module remains the same. Before
the classification module, the network calculates the complexity
class fi = argmaxj Sj (xi) for subimage xi. xi will be processed with
the single fith branch in the classification module and generate
the predicted probability value ŷi.

3.3. Decomposition feature enhancement

In this section, we elaborate on the decomposition feature en-
hancement approach, which generates subimages xi (i = 1, . . . ,N)
from the original input image x. As shown in Fig. 4, this approach
contains several steps to generate a decomposition standard upon
the dataset. When training and testing, the framework uses this
standard to generate subimages.

We assume one single image in the dataset as x. In the first
step, the decomposition feature enhancement approach utilizes
canny edge detection and generates a binarized image b. In the
second step, the approach utilizes Hough vertical line detection.
We obtain the pixel-level coordinates of the vertical lines L. In the
third step, the approach utilizes k-means clustering conducted on
the output coordinates of all the dataset images. The clustering
parameter k is set as N − 1, while N refers to the number of
separated regions. After the decomposition feature enhancement,
the framework sees the clustering output Pi (i = 1, . . . ,N − 1) as
the decomposition standard for all the images.
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Fig. 4. The whole process of the decomposition feature enhancement approach. x is a single image in the dataset. b is the output image of Canny edge detection. L
re the coordinates of the detected lines after Hough line detection. Pi (i = 1, . . . ,N − 1) are the output of k-means clustering.
.4. Loss functions

In this subsection, we elaborate our two proposed loss func-
ions, namely, complexity-class loss and multi-instance loss. The
ormer is used in the complexity class module, and the latter is
sed in the classification module.

.4.1. Complexity-class loss
The complexity-class loss is composed of two parts. The first

art is the cross-entropy (CE) loss. CE loss is designed for the
lassification of different feature complexities. CE loss LCE (xi) for
subimage xi is defined as

LCE (xi) = −

C∑
j=1

li,j · log
(
Sj (xi)

)
, (2)

where C is the number of complexity classes; li,j is the ground-
truth complexity class label for xi; and Sj is the jth value in the
complexity score vector, which indicates the probability that xi
belongs to the jth complexity class.

The second part enlarges the gaps among complexity classes.
We assume that a larger class gap can accelerate the convergence
speed of the network of the complexity class module. The second
part LS (xi) for xi is defined as

LS (xi) = −

C−1∑
j=1

C∑
k=j+1

⏐⏐Sj (xi) − Sk (xi)
⏐⏐ , s.t.

C∑
j=1

Sj (xi) = 1. (3)

LS (xi) is the negative number of distances between each pair of
complexity scores.

The complexity-class loss LCC is composed of the two parts
above:

LCC = ω1 · LCE + ω2 · LS, (4)

where ω1 and ω2 are the weights to balance different loss items.
LCE is used to ensure the classification quality for feature com-
plexity, and LS ensures that each branch can be chosen properly.

3.4.2. Multi-instance loss
The multi-instance loss is also composed of two parts. The first

part is the binary cross-entropy (BCE) loss, which is defined as

LBCE (xi) = −

2∑
k=1

yi,k · log
(
ŷi,k

)
, (5)

where yi,k is the ground-truth anomaly label for xi. k = 0 and
k = 1 represent the normal and anomaly, respectively. ŷi,k is the
predicted probability value. BCE loss is used for the classification
of anomalies and normal conditions.
5

The second part balances the class imbalance and enhances
the overall classification accuracy. The second part deals with the
scene in which the number of anomaly instances is smaller than
normal. The second part LM is defined as

LM =

{
(1 − β) · max1≤i≤N

[
−yi,k · log

(
ŷi,k

)]
, s.t.yi,0 = 1

β ·
∑N

i=1 −yi,k · log
(
ŷi,k

)
, s.t.yi,1 = 1

, (6)

where β is the balanced parameter. The second part differenti-
ates between the weights on the normal and anomalous ground
truth. The balance parameter is set to β ≥ 0.5, which can en-
sure that anomaly instances weigh more when updating network
parameters.

The whole multi-instance loss LMI is composed of these two
parts:

LMI = ω3 · LBCE + ω4 · LM , (7)

where ω3 and ω4 are the weights to balance different loss items.
LBCE ensures the classification quality, and LM makes the network
focus more on the anomaly instances.

4. Dataset

In this section, we introduce our proposed UVM-Anomaly
dataset for anomaly detection in UVMs. We provide some basic
information on the UVM-Anomaly dataset in Table 1. Some sam-
ples in the dataset are shown in Fig. 5. The images in the UVM-
Anomaly dataset were collected in two real UVM containers,
which were equipped with four 300,000-pixel high-resolution
fish-eye cameras. For the container, the length was 600 mm,
the width was 500 mm, and the height was 350 mm. There are
85 types of different SKUs in our dataset, including 69 bottled
drinks, 9 box-packed beverages and 8 types of cans. All SKUs
can be bought in Chinese markets. The images are all of size of
640 × 480.

As we can see from Table 1 and Fig. 5, (1) the variety of SKU
features is rich, which shows the feature unpredictability; (2) the
number of anomaly samples is smaller than the number of normal
samples, and the coverage area of the anomaly instance is also
small. These show the class imbalance problem.

We also show some extra information of the dataset related
to its SKU number and anomaly type.

1. SKU number: In the training set, the SKU number is be-
tween 1 and 12: 1208;
The SKU number between 12 and 30: 1594;
The SKU number between 30 and 50: 1625.
In the testing set, the SKU number is between 1 and 12:
41;
The SKU number between 12 and 30: 103;
The SKU number between 30 and 50: 117.
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Fig. 5. Illustration of some samples and instances in the UVM-Anomaly dataset.
Images with green borders are normal, and those with red borders are
anomalous.

Table 1
The statistics of UVM-Anomaly dataset.
Set Label Image number

Training set
normal 2594
anomaly 1833
total 4427

Testing set
normal 160
anomaly 101
total 261

Total 4688

2. Anomaly type: In the training set, the images that contain
falling-over: 1684;
The images that contain falling-over: 670.
In the testing set, the images that contain occlusion: 88;
The images that contain falling-over: 35.

. Experiments

In this section, we demonstrate the effectiveness of ClassAD
or anomaly detection in the UVMs by contrasting experiments,
valuated by the UVM-Anomaly dataset. We set the number of
ecomposition regions to N = 4 and Section 6.2 will demonstrate
ts effectiveness. In the complexity-class loss, we set ω1 = 5
nd ω2 = 1; in the multi-instance loss, we set ω3 = 1 and
4 = 0.2; and we set the balance parameter in the multi-instance
oss β = 0.7. The specific experimental results are shown in the
ollowing sections.
6

.1. Training and testing data

We used the training set of UVM-Anomaly for training. We
eparated all the images into subimages by the decomposition
eature enhancement approach. In the collection of the dataset,
nomalies usually occur in partial areas. Thus, there inevitably
xist repetitions of normal subimages after decomposition feature
nhancement. We removed the repetitive normal subimages, and
he total number of training samples was 8603.

These subimages were divided into three complexity classes.
e put all the subimages into a well-trained RCAN [11] su-
erresolution model and obtained a peak signal-to-noise ratio
PSNR) value ranking. Then, we divided all the subimages by their
SNR values from high to low, which means feature complexity
rom low to high. We used a division ratio of [0.2, 0.3, 0.5].
Low-complexity images accounted for a small proportion of the
whole dataset, and high-complexity images accounted for a large
proportion, as shown in Fig. 2. Therefore, the numbers of subim-
ages in the low-complexity range, medium-complexity range and
high-complexity range were 1721, 2581, and 4301, respectively.
Finally, we obtained the three-complexity-class training data for
classification module pretraining.

We used the testing set of UVM-Anomaly for testing. We used
the decomposition standard used for the training data to generate
subimages. The total number of subimages for testing was 652.

5.2. Implementation details

We used the PyTorch framework [42] using NVIDIA RTX 2080
Ti GPUs. ResNet [35] pretrained on ImageNet [43] was used as the
backbone of ClassAD. All the training samples were augmented
by random rotation, translation, brightness variance and contrast
variation. All the samples were resized into 200 × 400. The
training batch size was set as 16. We used the SGD optimizer,
where momentum was set to 0.9, and weight_decay was set to
0.0005. The initial learning rate was set to 0.001 and was divided
by 10 after 20 epochs.

5.3. Training details

The training process of ClassAD can be divided into two steps.
The first step is to pretrain each branch of the classification
module. The second step is to jointly train the complexity rat-
ing module and classification module. The reason why we train
ClassAD in this fashion is that if we train the whole ClassAD
framework from scratch, the training may become trapped in
overfitting or unbalance among different branches.

The first step: The pretraining process of the classification
module utilized all the training images. The number of total train-
ing iterations was set to 40k. We only used Binary Cross Entropy
loss as in Eq. (5). The second step: The complexity rating module
and classification module jointly updated the parameters. The
number of total iterations was set to 24k. We used complexity-
class loss and multi-instance loss to jointly train the complexity
rating module.

5.4. Comparisons with state-of-the-art methods

We conducted quantitative and qualitative analyses to eval-
uate the performance of ClassAD for anomaly detection. We
quantitatively evaluated the average accuracy, balanced F score
(F-1 score) and AUC (area under the receiver operating charac-
teristic curve) score to evaluate the effectiveness; we employed
average floating point operations (FLOPs) [44] and frame per
second (FPS) to evaluate the efficiency; and we employed the
number of parameters to evaluate the model complexity. The
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Table 2
Comparison of performances of different models for anomaly detection in the UVMs. For the 2nd–4th columns, the best results are
highlighted in bold.
Model Accuracy F-1 score AUC Average FLOPs FPS Parameters

SqueezeNet [36] 91.60% 0.927 0.898 1.2G 37.86 0.8M
DenseNet121[37] 94.85% 0.949 0.940 4.54G 9.05 7.1M
MobileNetv2[38] 91.96% 0.919 0.916 0.54G 25.06 2.4M
MobileNetv3[39] 93.70% 0.926 0.948 0.21G 20.80 1.5M
GhostNet [40] 94.02% 0.937 0.944 0.25G 15.32 3.9M
MOCCA [16] 88.79% 0.866 0.894 – – –
PatchCore [17] 90.57% 0.891 0.924 – – –
ClassAD-ResNet 96.28% 0.928 0.952 5.02G 26.73 61.7M

ResNet18[35] 89.94% 0.890 0.901 3.03G 45.81 11M
ResNet34[35] 95.04% 0.911 0.948 6.10G 27.97 21.3M
ResNet50[35] 96.26% 0.923 0.952 6.84G 20.16 23.4M
ClassAD-ResNet 96.28% 0.928 0.952 5.02G 26.73 61.7M

VGGNet11[41] 91.90% 0.894 0.904 15.70G 8.17 88M
VGGNet13[41] 94.12% 0.920 0.939 18.33G 7.26 103.1M
VGGNet16[41] 95.79% 0.931 0.947 24.56G 4.98 138M
ClassAD-VGGNet 95.81% 0.923 0.944 20.93G 6.08 329.1M
i
i
R
R

m
m
R

calculation of FLOPs was based on the 400 × 200 inputs. Our com-
arisons included two main parts: (1) the first part includes the
tate-of-the-art DCNN networks (SqueezeNet [36], DenseNet [37],
obileNetv2 [38], MobileNetv3 [39], GhostNet [40]) and the
tate-of-the-art anomaly detection methods (MOCCA [16], Patch-
ore [17]); (2) the second part used different backbones to prove
he effectiveness of ClassAD, and the backbones included ResNet
35] and VGGNet [41]. All the methods were trained and tested by
he same implementation as listed in Section 5.2, and they used
he same training and testing dataset.

The effectiveness performances are demonstrated in the first
our columns in Table 2. (1) As shown in the first part of Ta-
le 2, ClassAD outperforms the state-of-the-art lightweight mod-
ls on average accuracy, AUC and F-1 score. Compared with
tate-of-the-art anomaly detection methods, such as MOCCA and
atchCore, ClassAD also performs well. One-class classification
ethods have a wide application range, but it is difficult for

hese methods to address the situation in which the anomaly
eatures are similar to normal features. (2) In the second part,
lassAD can achieve similar or even better performance than the
riginal networks with less computation. For example, ClassAD-
esNet performs better than ResNet18, ResNet34 and ResNet50
n accuracy and F-1 score. Similar improvement also occurs on
lassAD-VGGNet. This is because ClassAD properly uses different-
apacity branches to process different-complexity images. Fur-
her analyses is provided in Section 6.1.

As for efficiency, (1) compared with the lightweight models,
uch as MobileNetv3 and GhostNet, the ClassAD-ResNet method
hows a larger FPS than MobileNetv3 and GhostNet due to the
imple framework of residual blocks. (2) Furthermore, compared
ith the original backbone, ClassAD has fewer average FLOPs be-
ause ClassAD utilizes a complexity rating module and some im-
ges are sent into lighter branches. As for the inference speed, our
ethod also performs better than the original DCNN, i.e., ClassAD-
esNet outputs 6.57 more images than ResNet50 per second, and
lassAD-VGGNet outputs 1.10 more images than VGGNet16 per
econd. All these results demonstrate that due to the complexity-
ating mechanism, ClassAD can obtain a high speed for classifica-
ion.

For the model complexity, as shown in the last column of
able 2, the number of parameters of ClassAD is larger than that
f the other ResNets. The number of parameters only influences
he memory cost on the GPUs. ClassAD has a larger memory
ost but obtains a more desirable balance between efficiency and
ffectiveness.
The qualitative results of ClassAD on the UVM-Anomaly dataset
re shown in Fig. 6. (1) In the aspect of anomaly detection, we can

7

see that ClassAD can classify anomalies well. (2) In the aspect
of complexity class, we can see that different subimages are
classified into diverse complexity classes, which is beneficial to
the whole framework for enhancing inference speed and saving
computational costs.

6. Discussions

In this section, we first discuss the feature complexity prob-
lem, which will demonstrate the superiority of ClassAD. Then, we
discuss the effectiveness of the decomposition feature enhance-
ment approach. Finally, we discuss the multi-instance loss.

6.1. Feature complexity

In this subsection, we discuss the performances of different-
capacity models (ResNet18, ResNet34, and ResNet50) working on
different feature complexity ranges. It will highlight the feature
complexity imbalance problem and demonstrate the superiority
of ClassAD. Fig. 7 shows the different accuracy change curves
in different feature complexity ranges. In Figs. 7(a), 7(b) and
7(c), we show the performances in the low-complexity, medium-
complexitylexity and high-complexity ranges.

(1) For the low-complexity feature range, we find that the
training curves of the three models all level off at approximately
60k iterations. As shown in Fig. 7(a), at 100k iterations, ResNet18
achieves 92.55%, which is lower than the 93.45% accuracy of
ResNet50; at 140k iterations, ResNet18 increases to 93.84%, which
s higher than the 91.05% accuracy of ResNet50. This shows that
n the low-complexity feature range, shallow networks (such as
esNet18) can tie or even outperform deep networks (such as
esNet50).
(2) For the medium-complexity feature range, the perfor-

ance of ResNet18 is generally worse than that of the other two
odels. As shown in Fig. 7(b), ResNet50 generally outperforms
esNet34 and ResNet18. However, at 140k iterations, ResNet34

achieves 90.12%, and ResNet50 achieves 90.10%. This shows that
in the medium-complexity feature range, ResNet34 can achieve a
comparable performance with ResNet50.

(3) For the high-complexity feature range, as shown in Fig. 7(c),
ResNet50 generally outperforms ResNet34 and ResNet18 in terms
of accuracy. High-complexity features are more difficult for DC-
NNs to learn and represent. High-complexity features need more
computational cost and representative parameters.

In conclusion, the experimental results show that different-
capacity networks can perform well in different feature com-
plexity ranges. This shows that a single network has difficulty
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Fig. 6. Some qualitative results on the UVM-Anomaly dataset. The anomaly class determines whether the subimage is anomalous; the complexity class is the classified
complexity class for each subimage.
Fig. 7. The accuracy curves on the data with different complexity ranges of three classifiers: ResNet18, ResNet34, and ResNet50.
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alancing effectiveness and computational resources due to the
eature complexity imbalance problem. Therefore, we designed
lassAD to combine shallow and deep models in one framework,
hich will avoid underfitting and reduce computational costs.
able 2 has proven that ClassAD also obtains an improvement in
lassification performance.

.2. Discussion on the decomposition feature enhancement approach

In this subsection, we discuss the effectiveness of the de-
omposition feature enhancement approach. We conducted the
omparison experiment on different numbers of decomposition
 C

8

regions N and some other data augmentation approaches, includ-
ing CutMix [45] and average segmentation. Average segmentation
means that we separate the images on average, e.g., a 640 × 480
image into four 160 × 480 subimages. All the experiments were
conducted on ResNet50, and we observed the best results in 20k.
he experimental results are shown in Table 3.
As shown in Table 3, the performances of N > 0 (the 2nd, 3rd,

nd 4th) rows are better than the performance of N = 0 in all as-
ects. Compared with other data augmentation approaches, such
s cutmix [45] and average segmentation, decomposition feature
nhancement also outperforms other approaches. We infer that
utMix is not suitable for situations when anomaly features are
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c

N

Fig. 8. Illustration of several contrasting feature maps of ResNet50 with N = 0 and N = 4. (a) includes original images and their output heatmaps; (b) includes the
orresponding subimages and their output heatmaps. To facilitate comparison, we mark anomaly areas with red boxes.
Table 3
Comparison of different numbers of decomposition regions N and some
other data augmentation approaches. N = 0 means that we use no decom-
position feature enhancement approach. The best results are highlighted in
bold.
Method Number AUC FLOPs

Decomposition
feature enhancement

N = 0 0.896 22.15G
N = 2 0.928 11.58G
N = 3 0.923 8.03G
N = 4 0.935 6.84G

CutMix [45] – 0.740 –
Average segmentation N = 4 0.904 –

similar to normal features, and average segmentation damages
the integrity of SKU features. The experimental results demon-
strate that decomposition feature enhancement has a desirable
effect on anomaly detection in UVMs.

For AUC, N = 4 achieves 0.935, which is better than 0.928 of
= 2 and 0.923 of N = 3; in addition, N = 4 also achieves a

comparable performance with N = 2 for accuracy and F-1 score.
AUC is the area under the receiver operating characteristic (ROC)
curve, and a high AUC value means that more anomalies are rec-
ognized, which is important for practical use. On the other hand,
the FLOPs of N = 4 is much smaller than those in other situations.
This is because small inputs bring only a small computational
cost. As a result, we choose N = 4.

Additionally, we show some results in Fig. 8 to demonstrate
that decomposition feature enhancement is beneficial to feature
extraction. In Fig. 8 we can see the unpredictability and irreg-
ularity of anomaly features in Fig. 8(a) anomaly features have
irregular and scattered heat-map outputs. However, in Fig. 8(b),
anomaly features show clear and nearly intact heat-map outputs.
This proves that large intraclass variance brought by feature un-
predictability increases feature representation difficulty, whereas
decomposition feature enhancement can tackle this problemwith-
out additional computational cost.
9

Fig. 9. Comparison of ClassAD-ResNet with or without complexity-class loss.
The x-coordinate is the training iterations.

6.3. Discussion on the loss functions

6.3.1. Effect of the complexity-class loss
In this subsection, we discuss the effectiveness of the loss

functions and the parameters with ClassAD-ResNet. First, we
show the effect of complexity-class loss by simply removing its
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Fig. 10. Comparison of ClassAD-ResNet with different values of balance
parameter β .

Table 4
Comparison of different loss functions for anomaly detection on
UVM-Anomaly dataset. The best results are highlighted in bold.
Loss function Accuracy F-1 score AUC

BCE loss 87.61% 0.880 0.860
Dice loss [46] 86.71% 0.865 0.854
Focal loss [47] 88.56% 0.887 0.862
Multi-instance loss 88.96% 0.884 0.866

second part, which means we set ω2 = 0. Then, complexity-
lass loss turns into a simple cross-entropy loss. Fig. 9 shows the
hanging curve of the loss value and accuracy over iterations.
hen ω2 = 0, which means without complexity-class loss,

the accuracy curve oscillates and does not converge easily. It
shows that without complexity-class loss, the complexity rating
module only makes classification without enlarging the gap, but
complexity-class loss could make this process smoother.

6.3.2. The multi-instance loss
We selected three loss functions for comparison: BCE loss,

ice loss [46], and focal loss [47]. Dice loss and focal loss have
een proposed to address the class imbalance problem. We con-
ucted all the contrast trials on ResNet50. As shown in Table 4,
ulti-instance loss outperforms other loss functions in terms of
ccuracy and AUC. For the F-1 score, multi-instance loss achieves
.884, which is just 0.003 lower than focal loss. Compared with
he fundamental BCE loss, multi-instance loss obtains a huge
mprovement. This is because multi-instance loss strengthens the
eight of anomaly samples to tackle the class imbalance problem.

.3.3. The balance parameter β

We also discuss the balance parameter β in the multi-instance
loss. We set the values of β = 0, 0.1, . . . , 1.0 to conduct the ab-
ation experiment. The experimental results are shown in Fig. 10.
10
As shown in Fig. 10(a), we can see that the accuracy and precision
values of the model on β = 0.7 are higher than those of the other
models. In addition, the recall value of the model on β = 0.7 also
achieves a relatively high level. The reason why the high β value
brings a high recall value is that the high β value strengthens
the weight of anomaly samples. As shown in Fig. 10(b), we find
that the F-1 score value of the model on β = 0.7 is higher
han the others. In addition, when β = 0, the multi-instance
oss divides no extra attention on the anomaly, and β = 0.7
erforms better than β = 0. This proves that multi-instance loss
s beneficial to imbalanced datasets. Finally, we chose the balance
arameter β = 0.7 in the multi-instance loss considering the
verall performances.

. Conclusion and future work

In this paper, we propose a new anomaly detection frame-
ork for UVMs named complexity-classification anomaly detec-
ion (ClassAD). Our method is composed of a complexity rating
odule and classification module. It uses a decomposition fea-

ure enhancement approach at the beginning. We also propose
omplexity-class loss and multi-instance loss for ClassAD. In ad-
ition, we propose the UVM-Anomaly dataset. Experiments show
hat ClassAD can enhance the performances of CNNs as well as
ccelerate inference speed. The discussions show that the decom-
osition feature enhancement approach is beneficial to model
earning and acceleration. In addition, we have also proved that
ulti-instance loss can address the class imbalance problem.
At present, our method only deals with anomaly detection in a

ingle scene. In our future work, we will investigate the diversity
n other scenes.
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